VTT Finland is developing 3D technology for wound care

VTT Finland is developing 3D technology for wound care

Cellulose nanofibrils have properties that can improve the characteristics of bio-based 3D-printing pastes. VTT Technical Research Centre of Finland is developing a 3D wound care product for monitoring wound condition in hospital care. However, the first commercial nanocellulose applications will be seen in indoor decoration elements, textiles and the production of mock-ups.

3D printing has proven to be an efficient manufacturing method for complex, customised and light structures. In addition to thermoplastics, 3D printing materials include metals, ceramics and foodstuffs. The range of biomaterials in 3D paste printing is still fairly limited, since pastes pose unique challenges: their structure must not collapse during printing and the objects manufactured must remain sufficiently strong, rigid or flexible after drying. In 3D biomaterial filaments, however, commercial products already exist.

Cellulose nanofibrils offer an opportunity for developing durable, bio-based commercial 3D-printing materials. They can offer an alternative to the currently used chemicals, such as resins, synthetic thickeners, strengtheners and plastics, the use of which might generate harmful emissions and even allergising compounds.

3D technology in wound care
Nanocellulose is an attractive option for medical applications, for example as a carrier of drug molecules. VTT is currently developing a solution where a protein attached to a 3D-printed adhesive bandage can help to promote the growth of skin cells around a wound. The purpose is to have the healed wound area remain flexible instead of it developing stiff scar tissue. The development is done in collaboration with the University of Tampere and funded by The Academy of Finland under the BioDisp3D programme. The same materials development process can also be used in the cosmetics industry or in the manufacture of artificial bone, for example.

“By using nanocellulose, we have succeeded in creating 3D structures that absorb liquids three times more efficiently than the compared alginate fibre dressings commonly used in wound care,” says Senior Scientist Panu Lahtinen from VTT.

Source: vttresearch.com

Read more…

Leave a Reply

Your email address will not be published. Required fields are marked *