Carnegie Mellon University researchers develop low-cost open-source 3D bioprinter (Video)

3D bioprinter

Researchers at Carnegie Mellon University have developed a low-cost 3D bioprinter by modifying a standard desktop 3-D printer, and they have released the breakthrough designs as open source so that anyone can build their own system. The researchers—Materials Science and Engineering (MSE) and Biomedical Engineering (BME) Associate Professor Adam Feinberg, BME postdoctoral fellow TJ Hinton, and Kira Pusch, a recent graduate of the MSE undergraduate program—recently published a paper in the journal HardwareX that contains complete instructions for printing and installing the syringe-based, large volume extruder (LVE) to modify any typical, commercial plastic printer.

“What we’ve created,” says Pusch, “is a large volume syringe pump extruder that works with almost any open source fused deposition modeling (FDM) printer. This means that it’s an inexpensive and relatively easy adaptation for people who use 3-D printers.” Continue reading “Carnegie Mellon University researchers develop low-cost open-source 3D bioprinter (Video)”

3D printing and programming genetically engineered bacteria

genetically engineered bacteria

Wearable tech is the name given to smart electronic devices that can be worn or implanted in the body. An enticing opportunity for innovative tech developers in sports, health, fashion and entertainment, 3D printing is revealing new possibilities for wearable tech such as electronic second skins, and smart fabrics.

In the latest research from Massachusetts Institute of Technology (MIT), a team has developed a “living” 3D printer bio-ink that’s not only smart but could change the way we think about technology altogether. Harnessing natural reactions of bacteria, responsive devices made using this smart ink represent the basic build blocks of electricity-free wearable tech.

Made by members of the same team that made the soft-robotic, fish-catching glove, this 3D printable bio-ink adds to an extensive portfolio of smart materials in development at MIT. Continue reading “3D printing and programming genetically engineered bacteria”

Multimaterial and Multiscale Biofabrication of 3D in vitro models of complex tissues – Presented by Giovanni Vozzi, University of Pisa

Giovanni Vozzi

Multimaterial and Multiscale Biofabrication of 3D in vitro models of complex tissues – Presented by Giovanni Vozzi, University of Pisa, at the 3D Medical Conference, which will take place on 30-31 January 2018 at MECC Maastricht, The Netherlands. Read the interview

A biological tissue is a composite material with “bottom-up” hierarchical structure that is closely related to its heterogeneous function. The extracellular matrix modulates biochemical and biophysical signalling, and its rigidity is an important microenvironmental parameter that regulates the spatiotemporal dynamics of intercellular signalling. For this reason, many studies are focused on fabricating scaffolds processed at multiple scales with structural and mechanical properties that are optimal for eliciting specific response or mimic those found naturally. These scaffolds have to present large surface areas that have appropriate topology and biochemical cues (e.g, ligands) at the nanoscale for tissue adhesion, while also exhibiting integral porosity to allow for the exchange of molecules that maintain cellular function.

In this talk, the use of a multiscale and multimaterial process will be presented to develop 3D in vitro model that can mimic the 3D complexity of natural tissue. These novel 3D in vitro models can be used for the study of physio-pathological condition and for the analysis of effects on cell activities of different biomolecule and/or drugs. Continue reading “Multimaterial and Multiscale Biofabrication of 3D in vitro models of complex tissues – Presented by Giovanni Vozzi, University of Pisa”

New method to 3D Print laboratory-grown cells to form living structures, developed by Oxford researchers

3D Print laboratory-grown cells

New method to 3D Print laboratory-grown cells to form living structures, developed by Oxford researchers

The approach could revolutionise regenerative medicine, enabling the production of complex tissues and cartilage that would potentially support, repair or augment diseased and damaged areas of the body.

Printing high-resolution living tissues is hard to do, as the cells often move within printed structures and can collapse on themselves. But, led by Professor Hagan Bayley, Professor of Chemical Biology in Oxford’s Department of Chemistry, the team devised a way to produce tissues in self-contained cells that support the structures to keep their shape.

The cells were contained within protective nanolitre droplets wrapped in a lipid coating that could be assembled, layer-by-layer, into living structures. Producing printed tissues in this way improves the survival rate of the individual cells, and allowed the team to improve on current techniques by building each tissue one drop at a time to a more favourable resolution. Continue reading “New method to 3D Print laboratory-grown cells to form living structures, developed by Oxford researchers”

Brave new world of 3D printed organs now includes implanted ovary structures (Video)

3D printed organs

The brave new world of 3D printed organs now includes implanted ovary structures that, true to their design, actually ovulate, according to a study by Northwestern University Feinberg School of Medicine and McCormick School of Engineering.

By removing a female mouse’s ovary and replacing it with a bioprosthetic ovary, the mouse was able to not only ovulate but also give birth to healthy pups. The moms were even able to nurse their young.

The bioprosthetic ovaries are constructed of 3-D printed scaffolds that house immature eggs, and have been successful in boosting hormone production and restoring fertility in mice, which was the ultimate goal of the research. Continue reading “Brave new world of 3D printed organs now includes implanted ovary structures (Video)”

Partnership for bio-printing of hair, signed by Poietis and L’Oreal

bio-printing

Partnership for bio-printing of hair, signed by Poietis and L’Oreal. L’Oreal has been committed to tissue engineering for almost 30 years and holds unique knowledge and expertise in the field of bio-printing of hair. With this exclusive research partnership, L’Oreal and Poietis are giving themselves the means to pursue a new scientific challenge: bio-printing a hair follicle, the small organ that produces hair, using a bio-printer. Continue reading “Partnership for bio-printing of hair, signed by Poietis and L’Oreal”

Chemical compound developed by UBC researchers makes creating biological tissue safer and more affordable

A chemical compound developed by UBC researchers makes it possible to create biological tissue with a light projector you can buy at Walmart.

The compound, a new type of biological ink used in the 3D printing of tissue, eliminates the need to use UV light systems in favour of safer, more conventional light. Continue reading “Chemical compound developed by UBC researchers makes creating biological tissue safer and more affordable”

Cutting-edge 3D printing techniques have been leveraged in the biomedical engineering field using bioinks

THREE-dimensional (3D) printing continues to drive innovations in many disciplines, including engineering, manufacturing, aerospace, global security, and medicine, to name only a few. Most 3D products are made of plastics or metals, but cutting-edge 3D printing techniques have been leveraged in the biomedical engineering field using bioinks—a fluid with biological components—to manufacture vascularized tissue. Once refined, this approach could be used to engineer complete human organs for implantation and to assess medical treatments. Continue reading “Cutting-edge 3D printing techniques have been leveraged in the biomedical engineering field using bioinks”

Harvard Researchers Reveal New Method for 3D Bioprinting Thick Vascularized Tissue (Video)

A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School for Engineering and Applied Sciences (SEAS) has invented a method for 3D bioprinting thick vascularized tissue constructs composed of human stem cells, extracellular matrix, and circulatory channels lined with endothelial blood vessel cells. The resulting network of vasculature contained within these deep tissues enables fluids, nutrients and cell growth factors to be controllably perfused uniformly throughout the tissue. The advance is reported March 7 in the journal Proceedings of the National Academy of Sciences. Continue reading “Harvard Researchers Reveal New Method for 3D Bioprinting Thick Vascularized Tissue (Video)”