Global 3D bioprinting market is expected to reach USD 1.82 billion by 2022

Global 3D bioprinting market is expected to reach USD 1.82 billion by 2022, according to a new report by Grand View Research Inc.

Rising prevalence of chronic diseases such as Chronic Kidney Disease (CKD) which demands kidney transplantation is expected to boost the market growth, as 3D bioprinting is convenient and cost effective substitute for organ transplantation. Continue reading “Global 3D bioprinting market is expected to reach USD 1.82 billion by 2022”

MIT’s Biologic program attempts to program living organism and create organically reactive material (Video)

bioLogic is growing living actuators and synthesizing responsive bio-skin in the era where bio is the new interface. We are Imagining a world where actuators and sensors can be grown rather than manufactured, being derived from nature as opposed to engineered in factories. Continue reading “MIT’s Biologic program attempts to program living organism and create organically reactive material (Video)”

Researchers Develop 3D Bioprinting Method that Produces Uniform Blocks of Embryonic Stem Cells

When it comes to 3D bioprinting with stem cells the obvious endgame is the ability to produce complex living tissue, such as replacement organs or biological matter. The potential future applications would completely change the world in numerous ways that are difficult to even predict. Transplant organs grown from a patient’s own DNA would be only one of the many uses of complex 3D bioprinted tissue; animal testing could be rendered completely unnecessary, as would the slaughter of animals as a food source. And while we are probably decades away from being able to produce even the simplest of living tissues, researchers and scientists are inching ever closer. Continue reading “Researchers Develop 3D Bioprinting Method that Produces Uniform Blocks of Embryonic Stem Cells”

Bioprinting: Ushering in a new era of medicine

A year and a half ago, Dr. Albert Chi, a surgeon at the Johns Hopkins Hospital and an expert in prosthetic devices, was talking to a group of parents whose children suffered from congenital limb loss. He told them that prices don’t make it feasible to fit children with advanced prosthetic devices — kids will outgrow them in months, and more money will have to be spent upsizing a prosthetic hand or limb. That’s when one parent challenged Chi: Hadn’t he heard of 3-D printing? Continue reading “Bioprinting: Ushering in a new era of medicine”

Russian Scientists Successfully Implant 3D-Printed Thyroid Gland

A Russian company announced a successful experiment implanting 3D-printed thyroid glands into mice, and the results will be published next week, said Dmitri Fadin, development director at 3D Printing Solutions.

“We had some difficulties during the study, but in the end the thyroid gland turned out to be functional,” Mr. Fadin told RBTH. Continue reading “Russian Scientists Successfully Implant 3D-Printed Thyroid Gland”

Timpanic Membrane Bioprinted at Maastricht University

Cartilage we can already bioprint with discrete success, as the many images of bioprinted ears circulating around the web clearly seem to demonstrate. But how can we make those ears actually function? For that, we need much more advanced biofabrication processes. What scientists need to do is to find a way to accurately and efficiently 3D print the scaffolds that enable the creation of “end-use”, implantable, complex cartilage implants. Continue reading “Timpanic Membrane Bioprinted at Maastricht University”

New 3D stem cell printing breakthrough could pave the way to individually tailored drug testing regimes

A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.

The team, led Dr Will Shu, at the School of Engineering and Physical Sciences (EPS), originally put together the first 3D printer capable of working with delicate stem cells, a valve-based technique sensitive enough to print the sensitive cultures without damaging them. Continue reading “New 3D stem cell printing breakthrough could pave the way to individually tailored drug testing regimes”