Carnegie Mellon University researchers develop low-cost open-source 3D bioprinter (Video)

3D bioprinter

Researchers at Carnegie Mellon University have developed a low-cost 3D bioprinter by modifying a standard desktop 3-D printer, and they have released the breakthrough designs as open source so that anyone can build their own system. The researchers—Materials Science and Engineering (MSE) and Biomedical Engineering (BME) Associate Professor Adam Feinberg, BME postdoctoral fellow TJ Hinton, and Kira Pusch, a recent graduate of the MSE undergraduate program—recently published a paper in the journal HardwareX that contains complete instructions for printing and installing the syringe-based, large volume extruder (LVE) to modify any typical, commercial plastic printer.

“What we’ve created,” says Pusch, “is a large volume syringe pump extruder that works with almost any open source fused deposition modeling (FDM) printer. This means that it’s an inexpensive and relatively easy adaptation for people who use 3-D printers.” Continue reading “Carnegie Mellon University researchers develop low-cost open-source 3D bioprinter (Video)”

Cutting-edge 3D printing techniques have been leveraged in the biomedical engineering field using bioinks

THREE-dimensional (3D) printing continues to drive innovations in many disciplines, including engineering, manufacturing, aerospace, global security, and medicine, to name only a few. Most 3D products are made of plastics or metals, but cutting-edge 3D printing techniques have been leveraged in the biomedical engineering field using bioinks—a fluid with biological components—to manufacture vascularized tissue. Once refined, this approach could be used to engineer complete human organs for implantation and to assess medical treatments. Continue reading “Cutting-edge 3D printing techniques have been leveraged in the biomedical engineering field using bioinks”