Researchers Design Toxin Scavenger Nano Robots

Toxin-Neutralising Nanoparticles
Researchers have designed 3D-printed robots as “microfish” that swim through the patients’ bloodstream, delivering drugs, pinpointing and removing toxins. The 3D-printed microfish contain functional nanoparticles that enable them to be self-propelled, chemically powered and magnetically steered. The microfish are also capable of removing and sensing toxins.

Nano-engineers at the University of California, San Diego used an innovative 3D printing technology they developed, to manufacture multipurpose fish-shaped 3D-printed robots — called microfish — that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. Continue reading “Researchers Design Toxin Scavenger Nano Robots”

Researchers Develop New Method to Build Microscopic Robots with Complex Shapes, Functionalities

Nanoengineers at the University of California, San Diego used an innovative 3D printing technology they developed to manufacture multipurpose fish-shaped microrobots — called microfish — that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. These proof-of-concept synthetic microfish will inspire a new generation of “smart” microrobots that have diverse capabilities such as detoxification, sensing and directed drug delivery, researchers said. Continue reading “Researchers Develop New Method to Build Microscopic Robots with Complex Shapes, Functionalities”