MIT’s Biologic program attempts to program living organism and create organically reactive material (Video)

bioLogic is growing living actuators and synthesizing responsive bio-skin in the era where bio is the new interface. We are Imagining a world where actuators and sensors can be grown rather than manufactured, being derived from nature as opposed to engineered in factories. Continue reading “MIT’s Biologic program attempts to program living organism and create organically reactive material (Video)”

“REGEMAT 3D bioprinting for cartilage regeneration and much more”, Presented by Jose Manuel Baena, REGEMAT 3D

Tissue regeneration (TR) is currently one of the most challenging biotechnology unsolved problems. Tissue engineering (TE) is a multidisciplinary science that aims at solving the problems of TR. TE could solve pathologies and improve the quality of life of billions of people around the world suffering from tissue damages.

New advances in stem cell (SC) research for the regeneration of tissue injuries have opened a new promising research field. However, research carried out nowadays with two-dimensional (2D) cell cultures do not provide the expected results, as 2D cultures do not mimic the 3D structure of a living tissue. Continue reading ““REGEMAT 3D bioprinting for cartilage regeneration and much more”, Presented by Jose Manuel Baena, REGEMAT 3D”

Timpanic Membrane Bioprinted at Maastricht University

Cartilage we can already bioprint with discrete success, as the many images of bioprinted ears circulating around the web clearly seem to demonstrate. But how can we make those ears actually function? For that, we need much more advanced biofabrication processes. What scientists need to do is to find a way to accurately and efficiently 3D print the scaffolds that enable the creation of “end-use”, implantable, complex cartilage implants. Continue reading “Timpanic Membrane Bioprinted at Maastricht University”

New 3D stem cell printing breakthrough could pave the way to individually tailored drug testing regimes

A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.

The team, led Dr Will Shu, at the School of Engineering and Physical Sciences (EPS), originally put together the first 3D printer capable of working with delicate stem cells, a valve-based technique sensitive enough to print the sensitive cultures without damaging them. Continue reading “New 3D stem cell printing breakthrough could pave the way to individually tailored drug testing regimes”

Sounds Good! Researchers Use 3D Printing to Produce Eardrum Scaffold

One of the more notable factors affecting the field of medical 3D printing is the simple ‘cool’ factor in looking at how far we have come from treatments of times long past. A common ailment, requiring medical attention through the ages, has been a perforated eardrum, which can occur due to trauma, infection, or Q-Tips. Continue reading “Sounds Good! Researchers Use 3D Printing to Produce Eardrum Scaffold”