New 3D stem cell printing breakthrough could pave the way to individually tailored drug testing regimes

A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.

The team, led Dr Will Shu, at the School of Engineering and Physical Sciences (EPS), originally put together the first 3D printer capable of working with delicate stem cells, a valve-based technique sensitive enough to print the sensitive cultures without damaging them.

That first printer was sensitive enough to work with laboratory grown stem cells derived from embryonic stem cells harvested generations ago. Now, working in conjunction with Roslin Cellab, the team has refined their printer so that it’s gentle enough to enable 3D printing of so-called ‘induced pluripotent stem (iPS) cells’, derived from a donor’s own adult cells, which are even more delicate than the lab-grown embryonic stem cells.

This means the team will be able to print the cells in three dimensions without damaging the cells’ biological functions such as their ability to make a wide range of different cell types such as liver, heart and brain cells. A report on the team’s work has just been published in the IOP journal Biofabrication.

Reduce dependence on animal testing
The short term aims of the team are to use the cell printing process to make miniature 3D human tissues for general testing of pharmaceutical drugs and in the process reduce the current dependence on live animal testing. Once established, specifically made tissue from each patient would enable doctors to prescribe drugs most likely to work and with fewest side effects.Read more