Researchers Develop 3D Bioprinting Method that Produces Uniform Blocks of Embryonic Stem Cells

When it comes to 3D bioprinting with stem cells the obvious endgame is the ability to produce complex living tissue, such as replacement organs or biological matter. The potential future applications would completely change the world in numerous ways that are difficult to even predict. Transplant organs grown from a patient’s own DNA would be only one of the many uses of complex 3D bioprinted tissue; animal testing could be rendered completely unnecessary, as would the slaughter of animals as a food source. And while we are probably decades away from being able to produce even the simplest of living tissues, researchers and scientists are inching ever closer.

A multinational group of researchers based at Tsinghua University in Beijing, China, and at Drexel University in Philadelphia have developed a bioprinting process capable of growing viable embryonic stem cell structures. The researchers used extrusion-based 3D printing technology to produce grid-like 3D structures that uniquely encouraged the growth of an embryoid body. These cell structures produced total cell viability and demonstrated rapid self-renewal for up to 7 days while exhibiting the ability to differentiate, or divide, into several different cell types.Read more