Researchers Develop Innovative 3D Printing Technology that Could Revolutionize Important Biomedical Equipment

We’ve all seen pic­tures of pre­ma­ture babies in neonatal care units: tiny beings, some weighing just a bit over a pound, with plastic tubes snaking through their nose or mouth, or dis­ap­pearing into veins or other parts of the body. Those tubes, or “catheters,” are how the babies get the nec­es­sary oxygen, nutri­ents, fluid, and med­ica­tions to stay alive. In the United States alone, nearly 500,000 pre­ma­ture babies are born each year.

The problem is, today’s catheters only come in stan­dard sizes and shapes, which means they cannot accom­mo­date the needs of all pre­ma­ture babies. “With neonatal care, each baby is a dif­ferent size, each baby has a dif­ferent set of prob­lems,” says Ran­dall Erb, assis­tant pro­fessor in the Depart­ment of Mechan­ical and Indus­trial Engi­neering. “If you can print a catheter whose geom­etry is spe­cific to the indi­vidual patient, you can insert it up to a cer­tain crit­ical spot, you can avoid punc­turing veins, and you can expe­dite delivery of the contents.”Read more


Leave a Reply

Your email address will not be published.